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Abstract

The hydrologic community is generally moving towards the use of probabilistic esti-
mates of streamflow, primarily through the implementation of Ensemble Streamflow
Prediction (ESP) systems, ensemble data assimilation methods, or multi-modeling
platforms. However, evaluation of probabilistic outputs has not necessarily kept pace5

with ensemble generation. Much of the modeling community is still performing model
evaluation using standard deterministic measures, such as error, correlation, or bias,
typically applied to the ensemble mean or median. Probabilistic forecast verification
methods have been well developed, particularly in the atmospheric sciences yet, few
have been adopted for evaluating uncertainty estimates in hydrologic model simu-10

lations. In the current paper, we overview existing probabilistic forecast verification
methods and apply the methods to evaluate and compare model ensembles produced
from different parameter uncertainty estimation methods. The Generalized Uncertainty
Likelihood Estimator (GLUE), a modified version of GLUE, and the Shuffle Complex
Evolution Metropolis (SCEM) are used to generate model ensembles for the National15

Weather Service SACramento Soil Moisture Accounting (SAC-SMA) model for 12 fore-
cast basins located in the Southeastern United States. We evaluate the model en-
sembles using relevant metrics in the following categories: distribution, correlation,
accuracy, conditional statistics, and categorical statistics. We show that the proba-
bilistic metrics are easily adapted to model simulation ensembles and provide a robust20

analysis of parameter uncertainty, one that is commensurate with the dimension of the
ensembles themselves. Application of these methods requires no information in addi-
tion to what is already available as part of traditional model validation methodology and
considers the entire ensemble or uncertainty range in the approach.
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1 Introduction

Streamflow predictions are vitally important to water supply and natural hazard man-
agement. However, hydrologic predictions are inherently based on uncertain modeling
systems, stemming from ill-defined parameters, model structure, input (forcing) data
and validation data (Muleta and Nicklow, 2005; Beven, 2006; Gupta et al., 2006; Clark5

and Kavetski, 2010; Kavetski and Clark, 2010; Schoups et al., 2010). Recent trends
in hydrologic modeling are to produce probabilistic estimates of streamflow, includ-
ing through the use of Extended Streamflow Prediction (ESP) systems (Day, 1985;
Faber and Stedinger, 2001; Franz et al., 2003; Bradley et al., 2004; Franz et al., 2008;
Thirel et al., 2008), ensemble data assimilation methods (Kitanidis and Bras, 1980a,b;10

Evensen, 1994; Margulis et al., 2002; Seo et al., 2003, 2009) and multi-modeling plat-
forms (Ajami et al., 2007; Duan et al., 2007; Vrugt and Robinson, 2007; Franz et al.,
2010). Although probabilistic information is produced using these methods, much of
the evaluation on the model ensembles (uncertainty) has traditionally been performed
using standard deterministic measures, such as error, correlation, or bias, typically15

applied to the ensemble mean or median. While creating a deterministic variable sim-
plifies the corresponding model evaluation, deterministic evaluation measures are defi-
cient for fully analyzing probabilistic forecast or model performance (Franz et al., 2003;
Bradley et al., 2004; Demargne et al., 2010).

In the classic definition, forecast verification is the process of assessing the skill of a20

forecast or set of forecasts, and work in this area is found as early as 1884 (Murphy and
Winkler, 1987; Jolliffe and Stephenson, 2003; Wilks, 2006). Verification methods have
been well developed in the atmospheric sciences (Jolliffe and Stephenson, 2003; Wilks,
2006), and their application to hydrologic forecasts has been progressing in recent
years, particularly for probabilistic verification (Franz et al., 2003; Bradley et al., 2004;25

Verbunt et al., 2006; Bartholmes et al., 2009; Renner et al., 2009; Brown et al., 2010;
Demargne et al., 2010; Randrianasolo et al., 2010). All methods of verification involve
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the comparison of a forecast (or set of forecasts) to the corresponding observation
(Wilks, 2006), which is defined by Murphy (1993) as forecast quality.

Model validation is not dissimilar from forecast verification, except that the approach
is generally aimed at evaluating the reproduction of historical events rather than the
prediction of future events. Despite the existence of probabilistic verification measures,5

few have been adopted for validating historical hydrologic model ensembles. Advances
in uncertainty estimation in hydrologic models has not necessarily been followed by ad-
vances in assessment of that uncertainty, and the practice of using deterministic eval-
uation measures to evaluate the median or mean of an ensemble has persisted. How-
ever, existing probabilistic forecast verification methods can easily be implemented to10

assess and compare ensembles produced from different uncertainty estimation meth-
ods. There are several examples of probabilistic assessment of ensembles to evaluate
model performance in the literature. Duan et al. (2007) used the ranked probability
score to evaluate the outcome of a multi-modeling system. De Lannoy et al. (2006)
evaluated model uncertainty for soil moisture using the rank histogram (or Talagrand15

diagram) and several moments from the probability density functions (such as ensem-
ble spread). Franz et al. (2008) applied probabilistic verification methods to hindcasts
produced using two different snow models to assess the impact of the model struc-
ture on streamflow predictions. Finally, Shrestha et al. (2009) used the range of the
probability interval and number of observations that fell within the interval to assess20

estimates of model parameter uncertainty in a lumped conceptual model.
The focus of the current study is to provide a succinct overview of a range of avail-

able probabilistic verification measures and to demonstrate their application in evalu-
ating the quality of parameter uncertainty estimates in hydrologic model simulations.
Subsequently, we discuss the ability of the various measures to provide insight on25

the performance of model output ensembles. The use of probabilistic verification met-
rics provide a more comprehensive assessment of simulation uncertainty and robust-
ness compared to the traditional approach of evaluating the ensemble mean or me-
dian. To demonstrate applicability of the verification methods, we evaluate uncertainty
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primarily associated with model parameters, although the approach outlined here is
readily transferable to evaluation of uncertainty from all potential sources of error. We
use the Generalized Uncertainty Likelihood Estimator (GLUE; Beven and Binley, 1992)
and the Shuffled Complex Evolution Metropolis (SCEM; Vrugt et al., 2003) to generate
model ensembles for an operational forecast model over a select set of basin in the5

southeastern United States. We introduce a simple (multi-criteria) modification of the
GLUE method resulting in three distinct ensemble sets to which the proposed verifica-
tion measures can be applied.

2 Methods

2.1 Study sites10

We undertake our verification assessment for 12 National Weather Service (NWS) fore-
cast basins located in the Southeastern United States (Table 1). All basins fall within
the Southeastern Plains ecoregion delineated by the Environmental Protection Agency
(EPA) based on similar hydro-climatic characteristics, geomorphology, vegetation, and
soil properties. The watersheds within this region have an array of vegetation types15

including cropland, pasture, woodland and forest. The streambeds in the southeast-
ern plains have a low-gradient and sandy bottoms. The basins also generally have no
precipitation as snow. Data for each basin were collected from the Model Parameter
Estimation eXperiment (MOPEX) database and spanned a period of 1 January 1948
to 30 September 2002. This region experiences a moderate climate with average tem-20

perature of 17.3 ◦C and average precipitation of 1360 mm yr−1. The study watersheds
range in size from less than 1000 km2 to almost 10 000 km2 (Table 1).

2.2 Modeling framework

The SACramento Soil Moisture Accounting (SAC-SMA) model (Burnash et al., 1973)
is widely used by the NWS River Forecast Centers (RFCs) for forecasting streamflow25
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in the United States. The SAC-SMA is a conceptual model with a two-layer soil sys-
tem to continuously account for water storage and flow through the subsurface. The
upper layer represents surface soil regimes and interception storage, while the lower
layer represents deeper soil layers and groundwater storage (Brazil and Hudlow, 1981).
Each layer consists of fast components (free water), driven mostly by gravitational5

forces, and slow components (tension water), driven by evapotranspiration and diffu-
sion. The SAC-SMA is a saturation excess model; when precipitation amounts exceed
percolation and interflow capacities, upper zone storage will overflow and overland
flow will occur. Direct runoff also occurs from any impervious areas. There are 16 pa-
rameters in the SACSMA, of which 13 were calibrated (Table 2). Inputs to the model10

are basin-average precipitation and potential evapotranspiration. The model output is
channel inflow, which is routed to the basin outlet using a series of five linear reser-
voirs. The linear reservoir recession coefficient, K , was also optimized along with the
13 SACSMA parameters (Table 2). The SAC-SMA model was run at the daily time-
step for each of the study basins. Calibration was conducted using the ten year period15

1 October 1979 to 30 September 1989. Model verification was conducted for the pe-
riod of 1 October 1989–30 September 2002 (a shorter time period was used for the
Choctawhatchee and Bogue Chitto Rivers based on the available record; Table 1).

2.3 Parameter identification methods

The Generalized Likelihood Uncertainty Estimator (GLUE) methodology is based on20

the concept that there is no one optimal parameter set but many parameters sets
which give reasonable results, termed equifinality (Zak and Beven, 1999; Beven and
Freer, 2001). In the GLUE methodology, feasible parameter ranges must be speci-
fied from which many parameter sets will be sampled. The model is run with each
parameter set and the output is evaluated against the observed variable of interest us-25

ing a likelihood function to distinguish behavioral sets (accepted) and non-behavioral
sets (rejected). The acceptability of the parameter set is based on a selected likeli-
hood function meeting some threshold criteria which is subjectively pre-defined. The
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cumulative distribution of the likelihood function values is computed for the acceptable
parameter sets. To remove outliers, those sets with a likelihood function that falls within
the middle 90% of the distribution are chosen.

In the current study, we apply GLUE using the traditional approach and then utilize a
slightly modified version, resulting in two GLUE-based parameter uncertainty ensemble5

methods. In each case, 10 000 parameter sets are generated using Latin hypercube
sampling (from a uniform distribution). The SAC-SMA model is run for each of the
10 000 sets, and the model output is evaluated against observed discharge using one
or more objective functions. Four possible objective functions are used in the evaluation
step, which are the Nash Sutcliffe efficiency score (NSE), root mean squared error10

(RMSE), percent bias (Pbias), and the correlation coefficient (R):

NSE = 1 −
(

N∑
t=1

(xt − ot)
2

/
N∑
t=1

(xt − ot)
2

N∑
t=1

(ot − ōt)
2

)
, (1)

RMSE =

√√√√ 1
N

N∑
t=1

(xt − ot)2, (2)

Pbias =

[
N∑
t=1

(xt − ot)

/
N∑
t=1

(xt − ot)
N∑
t=1

ot

]
· 100, (3)

and15

R =

n
N∑
t=1

xt ot −
( N∑
t=1

xt

)
·
( N∑
t=1

ot

)
√
n

N∑
t=1

x2
t −

( N∑
t=1

xt

)2

·

√
n

N∑
t=1

o2
t −

( N∑
t=1

ot

)2
, (4)

where xt is the simulated discharge, and ot is the observed discharge at time t, and N
is the number of time steps.
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2.3.1 Traditional GLUE approach

The first parameter identification method applies the standard GLUE methodology in
which parameter sets are classified as behavioral or non-behavioral based on a pre-
defined threshold using a single objective function. In this first test, any parameter
sets that produce a simulation with NSE>0.30 is classified as behavioral. From the5

behavioral sets, those that fall within the 90% prediction bounds are applied. This is
a relatively non-restrictive threshold and the approach can result in a large number of
behavioral sets.

2.3.2 Modified GLUE approach (W-GLUE)

In the second parameter identification method (noted as W-GLUE), more restrictive10

criteria are applied to try to reduce the potential range of uncertainty while still main-
taining a reasonable degree of accuracy in the ensembles of simulated discharge. A
secondary goal is to reduce the number of parameters sets that are used in the un-
certainty assessment. In the W-GLUE approach, a multi-criteria approach is utilized,
where behavioral parameter sets are defined as those that produce a simulation with15

DRMS<2 mm, NSE>0.6, Pbias<10% and R >0.8. Each behavioral parameter set is
then assigned a weight given by:

WTD = (1 − NSE) · 0.5 + (1 − R) · 0.25 + DRMS · 0.15 + |%BIAS| · 0.10 (5)

where a perfect WTD function would have a value of 0. Although the assigned weights
for each criterion are subjective, the combination of objective functions and weights20

used here is based on experience with the SAC-SMA model and NWS forecast eval-
uations (Hogue et al., 2000, 2006; Franz et al., 2003). Similar to the standard GLUE
method, the cumulative distribution of the WTD values is created, and the parame-
ters sets with WTD values that fall within the 90% predictions bounds are chosen.
Again, the goal of the study is to evaluate forecast measures on a range of ensembles25

from different parameter uncertainty methods, and not to develop the “best” parameter
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estimation method or combination of objective measures. Modification of the traditional
GLUE approach provides a distinct set of ensembles from the traditional approach for
use in the evaluation framework.

2.3.3 SCEM

The third parameter identification method uses the SCEM (Vrugt et al., 2003, 2006),5

which evolved from a combination of previously developed algorithms, including the
Shuffled Complex Evolution (SCE-UA; Duan et al., 1992, 1993) and the Metropolis-
Hastings (Metropolis et al., 1953; Hastings, 1970). The SCEM-UA uses an initial (ran-
dom) population of parameters, for which the posterior density is computed using a
Bayesian inference scheme (Box and Tiao, 1973). The population is then portioned10

into complexes, and a parallel sequence from each complex is initiated from the point
(parameter set) that contains the highest posterior density. New candidate points are
generated for each sequence and a Metropolis-annealing criterion is used to evaluate
whether the new point should be added to the current sequence (Vrugt et al., 2006). If
successful, new points will randomly replace existing members of the complex. After a15

prescribed number of iterations, new complexes are formed through shuffling. Evolu-
tion and shuffling are repeated until a targeted stationarity is reached in the Gelman-
Rubin convergence diagnostic (Gelman and Rubin, 1992).

2.4 Verification methods

There are an extensive set of forecast verification measures that could be adopted20

for model evaluation. We chose those that had the most relevance for the modeling
framework in the current study and have been identified by the hydrologic forecast
community as useful measures. The Cooperative Program for Operational Meteorol-

ogy, Education and Training (COMET®) Meteorology Education and Training (MetEd)
web-based module “Introduction to Verification of Hydrologic Forecasts” (for more infor-25

mation see http://www.meted.ucar.edu) and the NWS Hydrologic Verification System
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Requirements Team report (NWS, 2006) describe seven forecast verification cate-
gories and list several deterministic and probabilistic metrics for each category. Our
ensemble evaluation methodology is developed using six of the seven categories from
these two sources (skill scores are not used) and a sample of metrics from each cat-
egory (Table 3). Metrics in the first category are used to assess the distribution prop-5

erties of the ensembles. Metrics in categories two through five are used to evaluate
the joint distribution of the simulations and observations. Finally, category six contains
metrics for confidence.

The deterministic metrics are applied to the ensemble median, which is a typical
approach for hydrologic ensemble evaluation. The probabilistic metrics are applied10

to the simulations produced from the behavioral parameters that fell within the 90%
uncertainty bounds, which we refer to as the simulation ensemble. In all cases, the
ensembles are treated as a set of discrete variables by using the individual ensemble
values and applying an empirical distribution. The distribution metrics are applied to
both the parameter ensembles and the simulation ensembles. The remaining metrics15

are applied to only the simulation ensembles.

2.4.1 Distribution properties

Distribution metrics do not measure performance of an ensemble, but provide mea-
sures for understanding the characteristics of a data set. Analyzing the distribution
of a data set is a first step in understanding the underlying process that generated the20

numbers (Wilks, 2006). There are many measures of distribution, including the ensem-
ble mean and median, but we are most interested in those that quantify the ensemble
spread. Spread indicates the degree of dispersion around a central value. Spread is
useful for understanding the influence of the parameter ensemble uncertainty on the
simulation ensemble uncertainty, and the relationship between these ensemble uncer-25

tainties and the accuracy measures. Three metrics are used to evaluate the ensemble
spread: the interquartile range (IQR), median absolute deviation (MAD), and range:
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IQR =
1
N

N∑
t=1

q0.75(t) − q0.25(t) (6)

MAD =
1
N

N∑
t=1

median
n∑

i=1

xi (t) − q0.50(t) (7)

and

Range =
1
N

N∑
t=1

q0(t) − q1(t) (8)

where {x1, x2, x3, ... xn} is the set of simulated discharge values for one timestep5

(t) from an ensemble of size n and evaluated for all N timesteps, and qp is the sam-
ple quantile that exceeds the portion of the data given by subscript p, where 0≤p≤1
(Wilks, 2006). When Eqs. (6)–(8) are applied to the parameter ensembles, the mea-
sures are computed for individual parameters where {x1, x2, x3, ... xn} is the set of
n values for a single model parameter that are normalized by the possible parameter10

range (Table 2). Results from all N (14) model parameters are then averaged to obtain
a summary of the distribution characteristics.

Standard deviation is a common measure of sample dispersion, but it can be strongly
influenced by values far away from the mean. Therefore, we tested two alternative mea-
sures: IQR and MAD. IQR is a measure of spread for the central part of the ensemble15

only and is therefore resistant to outliers; however, the IQR only considers a small
range of the ensemble (Wilks, 2006). MAD is an alternative measure that incorporates
all the values of the ensemble. MAD is comparable to the standard deviation but less
influenced by outliers because it utilizes the median rather than the mean and does
not square the difference. Range is the difference between the highest and lowest20

values in the ensemble giving a measure of the total uncertainty in the ensemble and
will be particularly useful for assessing the tradeoff between precision and accuracy
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in the simulations. A simulation ensemble can be considered accurate if it contains
all the observations within the uncertainty bounds; however if the uncertainty bounds
are so large that there is little precision in the ensemble, the ensemble is useless for
any meaningful decision-making application. Because we computed IQR, MAD, and
Range at each simulation timestep, then averaged the values over time, the distribution5

metrics are not applicable to the ensemble medians in the context of the present study.
However, a distribution analysis of the ensemble medians may be relevant under other
situations.

2.4.2 Correlation

The joint distribution of the observations and simulations is commonly evaluated10

through correlation measures or graphically. In the deterministic approach, scatter
plots and Eq. (4) are used to assess the correlation between the ensemble median
and the observation. In the probabilistic approach, the correlation between ensemble
quantiles and the observations are evaluated using quantile plots. Quantile plots are
similar to the scatter plots, except select quantiles (qi ) are plotted against the observed,15

where i can be chosen as 0.10 (10th quantile), 0.25 (25th quantile), etc.

2.4.3 Accuracy

The term accuracy refers to a measure of error in the simulation ensemble when com-
pared to the observation. Equations (1), (2), and (3) are common error measures in
hydrology and are used here to assess the accuracy of the ensemble medians (Ta-20

ble 3). A simple measure of ensemble accuracy is the Containing Ratio (CR) (Xiong
et al., 2008). CR is the ratio of the number of the observations that fall within the pre-
dictions bounds at any timestep, t, to the total number of observations or time steps,
N:

3096

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3085/2011/hessd-8-3085-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3085/2011/hessd-8-3085-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3085–3131, 2011

Evaluating
uncertainty estimates
in hydrologic models

K. J. Franz and
T. S. Hogue

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

CR =

N∑
t=1

X (o(t))

N
(9)

X (o(t)) =
{

1, q0(t) < o(t) < q1(t)

0, otherwise
(10)

where X (o(t)) equals 1 when the observation falls within the lower (q0.0) and upper
(q1.0) bounds of the simulation ensemble and X (o(t)) equals 0 when the observation
falls outsize the ensemble bounds.5

The CR provides a useful summary measure of the accuracy of the uncertainty
bounds, but it does not consider the distribution of the ensemble members. At a min-
imum, containing the observation within the uncertainty bounds is desired; but an en-
semble in which most members fall near the observation (with only a few outliers) is
more useful than an ensemble in which the members are equally distributed across10

many possible flow regimes. In the case of the former, the ensemble probability would
give a more accurate indication of the magnitude of the observation that is most likely.
In the case of the latter, the ensemble probability would give similar likelihood to many
magnitudes of observations and it would not be clear which flow is most likely. The
conditional statistics in the next section are used to evaluate the distribution of the15

simulation ensemble probability relative to possible observations.

2.4.4 Conditional statistics

Murphy and Winkler (1987) set up a general framework for forecast verification
based on factorization of the joint distribution of forecasts and observations into the
calibration-refinement factorization:20

p
(
fi , yj

)
= p

(
yj |fi ) p (fi ); i = 1, ..., I ; j = 1, ..., J. (11)

and the likelihood-base rate factorization:

p
(
fi , yj

)
= p

(
fi
∣∣yj) p (yj); i = 1, ..., I ; j = 1, ..., J. (12)
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Here, fi denotes the likelihood of a simulated streamflow event at a given time step.
The streamflow event can take on any of the I values, i1, i2, ... iI . Likewise, the
corresponding observation, yi , can take on any of the J values j1, j2, ... jJ , where
yj =1 if the observation occurred and yj =0 if the observation did not occur. These two
factorizations provide a basis for evaluating the probability distribution of the simulation5

ensembles.
The conditional distribution p(yj |fi ) in Eq. (11) is referred to as reliability and is the

more familiar measure of the two. Reliability indicates how often the various J out-
comes of yj occur given the simulated likelihood fi . Ideally:

p
(
y = 1|fi

)
= fi (13)10

(Murphy and Winkler, 1987, 1992; Wilks, 2006). That is, the ensembles are considered
perfectly reliable if the conditional probability of the observation equals the probability
given by the ensemble for that observation.

Discrimination, or p(fi |yj ) (Murphy and Winkler, 1987; Wilks, 2006), is a less intuitive
measure, but very useful for evaluating how well the ensemble represents the likeli-15

hood of the observation relative to other possible observations. If (f1|y1)= (f2|y1), the
ensemble was not very discriminatory for event y1. On the other hand, if (f1|y1)=1 and
(f2|y1)=0, the ensemble was perfectly discriminatory for event y1.

Reliability and discrimination are displayed graphically and interpretation of the dia-
grams is explained in the results section. In this application of the metrics, three pos-20

sible event categories (I = J =3) were used: low flows or <30% of climatology; middle
flows or 30%–70% of climatology; and high flows or >70% of climatology, where clima-
tology is based on the available discharge data at each site (Table 1). The simulation
ensemble likelihood values were expressed as the probability of non-exceedance and
at intervals of 10% (deciles) based on the empirical distribution of the ensemble mem-25

bers.
Terms p(fi ) and p(yj ) are the marginal distributions (or frequencies) of the ensemble

probability and observations, respectively. The marginal distribution of the ensembles
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can be displayed on a frequency diagram to indicate the sharpness, or resolution, of
the ensembles. That is, are the ensembles dispersed across many flow ranges and
therefore little probability is given to any particular flow event, or are the forecasts
highly refined where likelihoods close to 0% and 100% are frequently observed (Wilks,
2006). As forecasts become sharper, the forecast probability becomes more narrowly5

distributed and is more frequently assigned to the extreme likelihood categories (i.e., 0–
10% and >90–100%). Thus, the sample sizes within the middle probability categories
are small for sharp forecasts.

2.4.5 Categorical statistics

The categorical statistics listed in Table 3 are used to evaluate dichotomous events.10

We use these metrics to evaluate the ability of the ensembles to simulate floods. The
magnitude of the flood discharge at the outlet gage for each watershed was obtained
from the Lower Mississippi River Forecast Center website (http://www.srh.noaa.gov/
lmrfc/).

The contingency table is a common method for verifying the joint distribution of non-15

probabilistic forecasts and observations. This concept is applied here to assess the
ability of the ensemble median to identify flood (o1) and no-flood (o2) events. Like-
wise, the ensemble median is classified as flood (x1) and no-flood (x2). We set up
a 2×2 contingency table (Fig. 1), and count all possible observation/simulation pairs.
Two measures are used to summarize the 2×2 contingency table (Wilks, 2006): the20

conditional probability p(x1|o1), also known as the probability of detection (POD):

p
(
x1 |o1

)
= POD =

a
a + c

(14)

and p(x1|o2), also known as the probability of false detection (POFD):

p
(
x1 |o2

)
= POFD =

b
b + d

. (15)
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The Brier Score (BS) (Brier, 1950), is used to evaluate the accuracy of the simulation
ensemble for floods and no-floods events in a probabilistic manner. The BS is the mean
squared error of the likelihood given to a particular event (ft) and the corresponding
observation (yt):

BS =
1
N

N∑
t=1

(ft − yt)
2 (16)5

where N is the number of forecast/observation pairs and is equal to the total number of
timesteps, t. The value of ft is the likelihood given to the observation of interest (e.g.,
flood). The value of the observation (yt) is equal to 1 if the observation occurred or 0
if the observation did not occur (Wilks, 2006). A perfect BS is 0, and the score ranges
from 0≤BS≤1.10

2.4.6 Sample size

Finally, confidence for evaluation purposes refers to uncertainty in the value of the
metric and is applied as appropriate (Table 3). The marginal distribution of the obser-
vations, p(yi ), in Eq. (12) is used to assess sample size in the various flow categories
and reflects the degree of confidence in the metric (Table 3). With larger samples sizes,15

the results are more likely to be representative of the behavior of the modeling system.
Confidence intervals are demonstrated where graphically possible, but given the large
number of samples, the confidence intervals are exceedingly small in most cases.

In the current study, all statistics are computed for daily simulations, for a total of
4745 timesteps (with the exception of 5475 and 4015 for Choctawhatchee and Bogue20

Chitto Rivers, respectively), therefore the overall sample size is quite large. However,
for evaluating extremes (i.e. floods), the sample size and confidence become an im-
portant consideration.
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3 Results

3.1 Parameter uncertainty estimation

The SCEM produced the largest parameter ensembles (Table 4), with an average of
14 310 sets per site. The GLUE produced an average of 5771 parameter sets per
site, and the W-GLUE produced considerably smaller ensembles with an average of5

876 parameter sets per site. The W-GLUE method produced only 18 parameter sets
for the Rappahannock River basin; this was the smallest set of parameters produced
for all methods (Table 4).

For each site and method, the parameter ensemble means were computed and nor-
malized by the feasible parameter range given in Table 2. The distribution of the nor-10

malized means indicates that the GLUE parameter ensemble means have the least
variation among sites (Fig. 2). Most of the normalized GLUE parameter values are
near 0.5, indicating that the parameter ensemble means are located near the middle of
the feasible parameter range. In comparison, the parameter ensemble means from the
W-GLUE and the SCEM have more variation between sites and are not located near15

the middle of the parameter range as frequently. Values of parameter k (the routing
parameter) have the most between-site variability for all methods.

3.2 Distribution properties

The parameter ensemble range reveals that both the GLUE and the W-GLUE param-
eter ensembles have values that span the entire feasible parameter space, resulting in20

parameter ranges near 1 (Fig. 3a). Comparison of the parameter ensemble size to the
parameter ensemble range indicates that the two metrics are not strongly correlated.
Although the W-GLUE parameter ensemble sizes are much smaller, the W-GLUE
method produced only a slightly smaller parameter range than the GLUE (Fig. 3a).
The SCEM parameter ensembles are the largest, but the range of parameter values25

are much narrower than the GLUE and W-GLUE parameter sets, spanning less than
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30% of the feasible parameter space at all sites. The W-GLUE trial for the Rappa-
hannock River, in which 18 parameter sets were identified, is the only instance where
W-GLUE produced a parameter ensemble range similar to SCEM. There is a corre-
lation between the range of the parameter ensemble and the range of the discharge
ensemble (Fig. 3b); the methods that have the largest parameter ranges also have the5

largest discharge ensemble ranges. Larger parameter ensemble ranges also correlate
with larger parameter ensemble MADs for all methods (Fig. 3c). As parameter ensem-
ble range increases, MAD increases, indicating that the parameter values deviate more
from the median.

The IQR, which is another measure of the parameter distribution, shows similar re-10

sults to the range analyses (Fig. 3d). The IQR is highest for the GLUE parameter sets
and the IQR from the W-GLUE method are only slightly smaller than the GLUE. In
addition, similar to the range, larger IQR values for the parameter sets corresponds to
larger IQR values for the discharge ensembles. The IQR does reveal characteristics
about the SCEM ensembles that are not apparent when evaluating the range only. The15

SCEM parameter and discharge ensembles vary little among sites, whereas the range
values had larger variation. This suggests that the central 50% of the parameter sets
are very similar, and the variation seen in the range (Fig. 3a) comes from the upper
and lower 25% of the distribution.

3.3 Correlation20

Evaluating the correlation of the ensemble medians to the observations reveals values
greater than 0.6 for all methods, with the W-GLUE showing the highest values overall.
Correlations are lowest for the SCEM (Fig. 4d). Correlation is a summary measure
of the relationship between the observations and the ensemble median, whereas the
quantile plots provide correlation information about the medians for various quantiles25

of flow. The quantile plots for select sites for the GLUE and SCEM are shown in Fig. 5.
These plots reveal that the ensemble medians are poorly calibrated to lower and higher
flows at most sites. Several of the sites (Chunky, Pearl, Bogue Chitto, Ochlocknee
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Rivers) have results similar to those of the Leaf River (Fig. 5c and f) in that the median
underestimates flows at both the lower and upper end of the range, but overestimates
the middle range; this is true for all methods. This results in the overall good correlation
seen in Fig. 4d, but it is clear that the calibration between the ensemble median and
the discharge changes across flow ranges.5

The best fit between the ensemble median and the observations occur for the Chick-
asawahay River (Fig. 5a and d); however, the lowest flows are underestimated by the
median for all methods at this site. The Noxumbee River is one of the few sites in which
the low flows are over-estimated by the medians (Fig. 5b and e). Except for the Chick-
asawahay River, the medians from all methods underestimate the highest flows at all10

sites. However, flows above 10 mm day−1 represent the upper 2% of the distribution at
the sites studied, and therefore this underestimation occurs for a very small number of
samples.

The q0.10 and q0.90 of the GLUE ensembles capture the low- and middle-range flows
fairly well at most sites (Fig. 5b and c). The high-flow ranges are captured by the q0.1015

and q0.90 of the GLUE only for Choctawhatchee, Chickasawahay (Fig. 5a), Noxumbee,
Tar, and Ochlocknee Rivers. For those basins in which the observation did not fall
within q0.10 and q0.90, the observations are most always contained within the upper
10% (between q0.90 and q1.0) as will be indicated by the containing ratio (CR) discussed
in the next section.20

3.4 Accuracy

Accuracy measures are used to evaluate the relative performance of the ensemble me-
dians from the three parameter estimation methods. There are many ways to display
these measures; however, we chose to combine all values from all basins into a single
plot using traditional boxplots. The metrics indicate that on average, the SCEM ensem-25

ble medians had lower accuracy scores than the GLUE and W-GLUE methods. SCEM
ensemble medians have the highest nRMSE and percent bias values (Fig. 4b and c),
and the lowest NSE (Fig. 4d). The ensemble medians of the GLUE and the W-GLUE
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perform similarly with similar nRMSE and NSE values, although the W-GLUE medians
have slightly better scores. There is a general tendency for the ensemble median from
all methods to overestimate discharge at the study sites (Fig. 4c), with the exception
of one site for the W-GLUE method and four sites for the GLUE method. By plotting
all sites together on one diagram, it is shown that the percent bias values from the5

W-GLUE methods are most consistent across sites.
The CR provides a measure of the accuracy of the range of the ensemble. The GLUE

ensembles have CR values very close to 1 (Fig. 6a and b), indicating that the obser-
vation is captured almost 100% of the time by the ensemble. The W-GLUE ensembles
have very similar results as the GLUE, with very high capture rates. High CR values10

generally correlate with large ensemble ranges, which provide a higher likelihood that
the observation will be contained within the bounds of the ensemble. Likewise, the nar-
row range of the SCEM ensembles (Fig. 5d–f) is correlated with low CR values (less
than 0.3 at all sites). Although the ensemble values are close to the observation values
on average (Fig. 5d–f), the SCEM ensembles do poorly for the CR metric. The CR was15

also computed by category by separating ensembles into one of three flow categories
based on where the observation occurred (low, middle, high). Results indicate that
the capture rates for each method are fairly consistent across all flow ranges but are
slightly better for low flows (Fig. 6c).

3.5 Conditional statistics20

In the analyses presented thus far, simulated discharge values (i.e. median, minimum
and maximum of the ensemble) were compared to observed discharge values and
evaluated using various metrics. However, to characterize the uncertainty information
provided by the ensembles, it is necessary to evaluate the accuracy of the likelihood
information which is derived from the distribution of the ensemble members. A critical25

skill of a probabilistic simulation is the ability for the ensemble to indicate which event(s)
is most likely, rather than just merely capture the event using large uncertainty bounds.
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Reliability diagrams (Fig. 7) illustrate the correlation between the ensemble likelihood
for a given flow (low, middle, high) to the frequency of the observations in that flow
category. Perfectly reliable ensembles will fall along the 1:1 line. If the conditional dis-
tribution falls to the right (left) of the 1:1 line, the ensembles are over-estimating (under-
estimating) the likelihood of the observations, or are over-confident (under-confident)5

(Wilks, 2006). The relative frequency of the probability is shown as an inset on the re-
liability diagrams to assess sample size in each likelihood bin (a measure of ensemble
refinement and confidence). The 90% uncertainty bounds on the reliability values are
shown in Fig. 7, but are exceedingly small.

The reliability diagram indicates that, overall, the ensembles have low reliability and10

are poorly refined (Fig. 7 and insets, respectively). The GLUE and W-GLUE ensembles
have the best reliability on average, and the ensembles are most reliable for high flows
(Fig. 7c and f). At a few of the sites, the GLUE and W-GLUE ensembles have quite
good reliability for low flows (Fig. 7a and d), but for many sites the ensembles are
over-estimating the frequency of low flows. The middle flows on average, tend to be15

over-estimated by all methods. Also apparent from the reliability diagrams is that the
GLUE ensembles never assigned more than a 70% likelihood to middle flows (Fig. 7b)
and W-GLUE ensembles never assigned more than a 80% likelihood to middle flows
(Fig. 7e).

Reliability diagrams allow evaluation of skill for individual magnitudes of probabil-20

ity; and we note that the skill varies for the studied parameter estimation methods.
For example, although the SCEM ensembles over-estimated the likelihood of each
flow category on average, they have fairly good reliability for likelihoods less than 40%
(Fig. 7g–i). Ensembles from all methods have very good reliability for likelihoods in the
range of 0–10% and 10–20% for all flow categories. This is also the category with the25

highest sample size (Fig. 7, insets). The skill for likelihood bins above 20% varies by
site and method. There are sites where the ensembles have good reliability through-
out the range of likelihoods for both the GLUE (Fig. 7a and c) and W-GLUE methods
(Fig. 7d and f).
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Because the ensemble members are highly distributed, the frequency of ensembles
that have likelihood in the 0–10% range is very high which indicates poor refinement
(Fig. 7 insets). The refinement of the GLUE and W-GLUE, which have the largest
parameter ranges, are slightly worse than SCEM ensembles. Because the SCEM has
smaller parameter ranges, it produced more ensembles with probabilities in the 90–5

100% likelihood bin. Although still poorly refined, the SCEM ensembles do have more
instances of ensemble likelihood falling in categories above 70%.

Classic calibration and verification approaches evaluate the simulation on the basis
of how well the simulation matches the observation at each timestep. The reliability
diagrams indicate that this practice does not assure a good calibration of the ensemble10

likelihoods for the parameter estimation methods evaluated in this study.
The ability of the ensembles to discriminate when observations will fall within one

of three possible flow categories (low, middle and high flows) is displayed in the dis-
crimination diagrams in Fig. 8. Results for all sites have been averaged together due
to space considerations; for analysis of an individual site, one figure like Fig. 8 would15

be needed for each site. If an ensemble is highly and correctly discriminatory for a
given flow level, the majority of the ensembles (and therefore probability) will fall within
the range for that flow level when it is observed. This means very little probability is
given to the other flow levels. If the ensembles are discriminatory, then the probability
distribution functions of the flow categories will not overlap to a great degree on the dis-20

crimination diagram (Murphy et al., 1989). Ideally, the ensembles should assign 100%
likelihood to the flow category that was observed and 0% likelihood to any other flow
category.

The discrimination diagrams indicate that for all methods there is good discrimination
for low flows (Fig. 8a, d, g) and high flows (Fig. 8c, f, i), and poorer discrimination for25

middle flows (Fig. 8b, e, h). The ensembles have some trouble determining when high
flows and low flows were most likely. Looking at just those times when low flows occur,
the ensemble probability is more often higher for middle flows than high flows. Likewise,
when high flows occur the ensemble probability is more often higher for middle flows
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than low flows.
The impact of the large range of GLUE and W-GLUE ensembles and small range

of the SCEM ensembles can be seen in the results from the discrimination diagrams.
Specifically, the ensemble probability of the SCEM is almost always given in the 0–10%
or 90–100% probability bins due to the small ensemble spread. GLUE and W-GLUE5

on the other hand occasionally gives ensemble probability in the middle categories,
indicating that the probability is more often distributed between flow categories, rather
than focused on one category. While in general the discrimination is highest for the
SCEM, the narrow ensembles do lead to occasional failures in simulating the correct
flow category when low (Fig. 8g) and high flows (Fig. 8i) occur as indicated by the pres-10

ence of ensemble probability for middle flows in the 90–100% probability bin. However,
the narrow ensemble range of the SCEM does result in better discrimination for mid-
dle flows compared to GLUE and W-GLUE. The higher ensemble spread in the GLUE
and W-GLUE lead to ensembles that give likelihood to low and high flows when middle
flows occur, resulting in relatively poor discrimination for middle flows (Fig. 8b and e).15

3.6 Categorical statistics

In the final analysis, three metrics are evaluated for determining how well the ensem-
bles simulated the occurrence of floods. The ensemble median is evaluated using the
probability of detection (POD) and the probability of false detection (POFD) using the
contingency table in Fig. 1, and the entire ensemble is evaluated using the Brier score20

(BS). No flood level was available for the Rappahannock River, and therefore this site
was not used in the analysis. At least one flood was observed during the evaluation
period at all sites.

The POD and POFD are generally displayed using a relative operating characteris-
tic (ROC) curve (Jolliffe and Stephenson, 2003; Wilks, 2006), however, because the25

POFD was very low (average 1%), a bar graph is used for better illustration (Fig. 9).
POD values equal to one and POFD values close to zero are optimum. Cross compari-
son of POD and POFD values are useful for determining which methods are performing
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best on average and if there are particular problems at a given site. For example, all
methods perform similarly, but the SCEM and W-GLUE have slightly higher POD than
the GLUE (the average PODs are 0.56 for GLUE, 0.60 for W-GLUE and SCEM).

Results from previous metrics help lend insight into the results shown in Fig. 9. Recall
from Fig. 5 that the medians from all methods tend to underestimate the highest flows5

at all sites, this negative bias in the upper range of the discharge values results in
the low POFD (Fig. 9b). The low bias in the median for the Leaf (Fig. 5c and f) and
Chunky Rivers (not shown in Fig. 5) leads to a low POFD (Fig. 9b), but results in no
skill for POD (Fig. 9a) at these sites. Chickasawahay River, which has a well calibrated
median, also has among the highest POD.10

The narrower ensemble bounds of the SCEM result in higher (less optimal) BS at
the study sites compared to the other two parameter estimation methods (Fig. 10a).
The average BSs are 0.014 for GLUE, 0.013 for W-GLUE, and 0.039 for SCEM. At
Chikasawahay, Noxumbee, and Leaf Rivers, the GLUE (Fig. 5a–c) and W-GLUE en-
sembles capture the high flows well (with the 10–90% uncertainty bounds). As a result,15

these ensembles assign some level of probability to floods and result in low BS values
in this test (Fig. 10a). Although the smaller range and tendency to overestimate high
flows (Fig. 5d–f) by the SCEM ensembles have the potential to lead to better flood
predictions by assigning higher likelihoods to flood events, the narrow ensemble range
leads to poorer overall performance. The SCEM ensembles at Choctawhatchee River20

strongly underestimate the highest flows. As a result, the BS for the SCEM are poor at
this site, while the GLUE and W-GLUE do better because the larger ensemble ranges
allowed some of the high flows to be captured. Comparing these results to the fre-
quency at which floods are simulated by each model (Fig. 10b), it is apparent that the
SCEM ensembles give 0% change of flows above flood stage on average 95% of the25

time. The GLUE and W-GLUE give likelihoods of floods more frequently. As a result,
the SCEM does more poorly than the other methods for the BS because it gives less
probability when flood events occur.
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Note that the BS for predictions above flood stage produces the same BS for predic-
tions below flood stage. For this reason, the failure to detect any floods for Leaf and
Chunky Rivers (Fig. 9a), produces a very low BS, because they had zero POFD. Thus
the BS is being heavily influenced by all the instances of no flood.

4 Discussion5

Of the distribution measures evaluated in this study, the range seems most useful
for cross-comparison of ensembles and understanding the relationship to discharge
ensembles. MAD is secondarily useful. The IQR gives different information about
the distribution than the MAD and range, but appears redundant to the range for our
analysis. Using these probabilistic metrics, in general, the SCEM outperformed the10

GLUE and W-GLUE only with respect to discrimination. The low range of the SCEM is
a desirable attribute, and allowed for better discrimination of flows in all flow categories.
However, the narrow range of the ensemble led to poorer performances in metrics
that evaluated the ability of the ensemble to capture the event within the uncertainty
bounds, such as CR and BS. The W-GLUE has a slightly better results compared15

to the GLUE in many cases. The smaller parameter ensemble has the advantage of
being more manageable and it was shown that the decrease in ensemble size does not
reduce the accuracy of the ensembles or ensemble medians. However, this method still
produces very wide parameter ensembles, and therefore, generally does not provide
an improvement in ensemble resolution.20

The quantile plots and range were most useful for understanding the ensemble per-
formance for other metrics. Quantile-quantile plots also provided information about
how the medians performed for various ranges of flow, which could not be gleaned
from summary statistics such as Eqs. (1)–(4). The MAD and IQR provided similar
information, and the MAD was more useful in assessing the dispersion of the ensem-25

bles. The CR is a simple overall measure of ensemble accuracy and a good baseline
assessment of ensemble performance. However, as shown, the CR does not provide
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information about biases in the ensembles, which is important for understanding why
the ensembles, such as the SCEM, failed to capture many of the observations.

Reliability is a common measure of calibration of the ensemble likelihoods. The pa-
rameter estimation methods that we tested did very poorly for reliability for our study
sites. One likely explanation is that the ensembles spreads were very large, resulting5

in very low probabilities for any possible observation, therefore the reliability for en-
semble probabilities above 20% was very poor due to low sample sizes. This suggests
that many of the individual ensemble members are poorly calibrated to the observa-
tions. Model calibration traditionally is accomplished by comparing the simulation and
observation at a single time-step. Perhaps calibration to the ensemble likelihood us-10

ing a summary metric that tests reliability as an objective function, would improve the
ensemble probability accuracy and the reliability results.

Discrimination also lends insight to the quality of the ensemble calibration. The en-
sembles did give high likelihoods to low and high flows when they occurred, indicating
that the majority of the ensembles are not falsely simulating these flow categories.15

Simulation of the proper flow category is heavily influenced by the precipitation inputs,
which may explain the similar results among the methods. The SCEM does discrimi-
nate better than the GLUE or W-GLUE. The simulation of floods is also heavily influ-
enced by the precipitation inputs. However, as POD results for the Leaf River revealed,
negatively biased ensembles can fail to produce flows large enough to indicate a flood20

regardless of the inputs.
Evaluation with respect to flow categories allows for assessment of model perfor-

mance under different conditions (i.e. low flows versus high flows) that summary mea-
sures are unable to portray. The BS had limitations for evaluating flood simulations.
Because this summary value includes instances when no flooding occurred, (that is,25

it is an evaluation of both flood and no-flood events), it is heavily influenced by the
large number of samples of no-flood. This leads to very low scores even though the
ensembles simulated the very high flows quite poorly on average.
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Our choice of flow levels based on climatological thresholds introduces a somewhat
arbitrary cut off point for analysis. While the use of reliability does not require the
use of flow categories (reliability could be computed for all ensembles collectively),
metrics such as discrimination and BS require some degree of categorization of the
observations of interest introducing subjectivity into the analysis. Additionally, we chose5

to use probability intervals of 10%, this interval can be adjusted to varying situations
and needs, and to test different confidence levels.

As mentioned above, the POFD and POD are often displayed graphically using a
ROC diagram. ROC diagrams can also be used to evaluate continuous and proba-
bilistic forecasts (Mason and Graham, 1999; Jolliffe and Stephenson, 2003). The area10

under the ROC curve is a common way to summarize the results of the contingency
table analysis. The limitation of the POFD and POD metric applied here, and as a
result any ROC diagram that could be developed from the values, is that the numerical
value of the predictand, in this case the ensemble median, is only used to sort the
medians into the 2×2 table (Wilks, 2006). The magnitude of the ensemble median as15

compared to the observation is not evaluated.
An additional graphical approach for correlation analysis is called the rank histogram.

Although we chose not to show the rank histograms in this manuscript because of
space requirements, it is frequently used in the forecast verification literature. The
rank histogram is a measure of statistical consistency and is used to determine if the20

ensemble includes the observations as equiprobable members (Hamill and Collucci,
1997; Wilks, 2006). Rank histograms are a useful tool for evaluating the ensemble
spread and forecast confidence, and can reveal deficiencies in the ensemble calibration
that can be connected to characteristics of the reliability diagrams. For a discussion of
rank histogram application and interpretation see Hamill (2001).25

Another common measure not applied here is the ranked probability score (RPS).
RPS is similar to the BS, except that more than two possible outcomes (discharge cat-
egories) can be defined (Epstein, 1969; Wilks, 2006). The measure is sensitive to the
distance between the categories forecasted and the true observation, and increasingly
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penalizes forecast the more probability is given to categories far from the category
in which the observation occurred. For analysis of continuous variables such as dis-
charge, the use of the categories introduces a degree of subjectivity to the verification
process as the number and type of categories chosen will affect the final value of the
RPS. The continuous ranked probability score (CRPS) is the application of the RPS5

to an infinite number of categories, and is therefore sensitive to the entire range of
possible observed values (Hersbach, 2000). Both the BS (Murphy, 1973; Wilks, 2006)
and the CRPS (Hershbach, 2000) can be decomposed into reliability, resolutions and
uncertainty to give more insight into the forecast system performance that cannot be
interpreted from the single BS or CRPS alone.10

5 Concluding remarks

When evaluating ensembles or simulations with an associated uncertainty, determinis-
tic metrics are often applied to the median or expected value. This practice ultimately
removes a significant amount of ensemble information from the evaluation process.
We have demonstrated a number of metrics that are traditionally applied for verification15

of probabilistic forecasts, and have shown these to be informative for evaluation and
comparison of streamflow simulations. A considerable amount of information about
the relative utility of the uncertainty estimation methods can be gleaned when treating
the simulations in a probabilistic manner. The probabilistic metrics provide an analysis
of model uncertainty, one that is commensurate with the dimension of the ensembles20

themselves.
Advanced probabilistic verification metrics developed for forecast verification provide

a rigorous platform by which modeling methods can be evaluated and cross-compared.
The application of these methods require no information in addition to what is already
available as part of the traditional model validation methodology, except that it con-25

siders the entire ensemble or uncertainty range in the approach. Common problems
such as identifying thresholds or appropriate distributions still exist, however, theses
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measure are much more informative about the true nature of model uncertainty es-
timates than simple deterministic measures. Through our efforts in this and future
papers, we hope to advance discussion about evaluation of simulation uncertainty and
more robust model verification measures.
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Table 1. Study basins, basin area, and annual average precipitation and discharge for the
period of record 1979–2002. Calibration and verification periods started 1 October and ended
30 September of the years indicated.

Site Name USGS Area precipitation discharge Calibration Verification
Gage ID [km2] [mm yr−1] [mm yr−1] period period

Rappahannock River 01668000 4134 1047.0 358.4 1979–1989 1989–2002
Near Fredericksburg, VA

Tar River at Tarboro, NC 02083500 5654 1143.5 327.9 1979–1989 1989–2002
Ochlockonee River Nr Havana, FL 02329000 2953 1335.7 326.2 1979–1989 1989–2002
Flint River at Montezuma, GA 02349500 7511 1193.3 366.1 1979–1989 1989–2002
Choctawhatchee River 02365500 9062 1405.0 534.7 1979–1989 1989–1994
at Caryville, FL

Escambia River Near Century, FL 02375500 9886 1470.3 544.1 1979–1989 1989–2002
Noxubee River at Macon, MS 02448000 1989 1388.9 464.9 1979–1989 1989–2002
Leaf River Nr Collins, MS 02472000 1924 1479.4 517.9 1979–1989 1989–2002
Chunky River Nr Chunky, MS 02475500 956 1419.0 467.4 1979–1989 1989–2002
Chickasawhay River at 02478500 6967 1459.0 495.3 1979–1989 1989–2002
Leakesville, MS

Pearl River at Edinburg, MS 02482000 2341 1390.2 455.4 1979–1989 1989–2002
Bogue Chitto River near Bush, LA 02492000 3142 1597.8 626.1 1979–1989 1989–2000
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Table 2. SACSMA model parameters and feasible range.

Parameter Description Units Range

UZTWM Upper-zone tension water maximum storage mm 1–150
UZFWM Upper-zone free water maximum storage mm 1–150
LZTWM Lower-zone tension water maximum storage mm 1–500
LZFPM Lower-zone free water primary maximum storage mm 1–1000
LZFSM Lower-zone free water supplementary storage mm 1–1000
UZK Upper-zone free water lateral depletion rate day−1 .1–.7
LZPK Lower-zone primary free water depletion rate day−1 0–0.2
LZSK Lower-zone supplementary free water depletion rate day−1 0.01–0.5
ADIMP Additional impervious area decimal fraction 0–0.4
PCTIM Impervious fraction of the watershed decimal fraction 0–0.1
ZPERC Maximum percolation rate dimensionless 1–249
REXP Exponent of the percolation equation dimensionless 0.5–4.5
PFREE Fraction of water percolating from upper zone decimal fraction 0–0.8

directly to lower-zone free water storage

K Five-level linear reservoir constant dimensionless 0.0–0.9
RIVA Riparian vegetation decimal fraction 0
SIDE Ratio of deep recharge to channel base flow decimal fraction 0.3
RSERV Fraction of lower-zone free water not transferable decimal fraction 0

to lower-zone tension water
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Table 3. Statistical measures used for evaluation of parameter estimation methods and their
respective categories.

Categories Deterministic metrics Probabilistic metrics

Distribution median, mean, range, inter-quartile
Properties range (IQR), median absolute

deviation (MAD), CDF

Correlation scatter plots, correlation quantile plots, rank histogram
coefficient

Accuracy Nash-Sutcliffe efficiency containing ratio (CR)
(error) (NSE), percent bias (%Bias),

root mean square error
(RMSE)

Conditional reliability , discrimination,
Statistics resolution

Categorical probability of detection, Brier score (BS)
Statistics probability of non-detection

Confidence sample size sample size, confidence interval
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Table 4. Number of parameters generated for each watershed by each parameter estimation
method.

Number of parameters

Site Name GLUE W-GLUE SCEM

Rappahannock River Near 3213 18 11 758
Fredericksburg, VA

Tar River at Tarboro, NC 6502 978 17 949
Ochlockonee River Nr Havana, FL 6111 655 1942
Flint River at Montezuma, GA 4307 409 3252
Choctawhatchee River at Caryville, FL 4424 699 16 101
Escambia River Near Century, FL 6823 1481 17 340
Noxubee River at Macon, MS 6881 1811 23 698
Leaf River Nr Collins, MS 6447 1209 15 103
Chunky River Nr Chunky, MS 4535 180 19 302
Chickasawhay River at Leakesville, MS 10 000 925 17 787
Pearl River at Edinburg, MS 6192 1702 15 793
Bogue Chitto River near Bush, LA 4324 447 11 693
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Fig. 1. Contingency table displaying the relationships between counts (a–d) of event pairs.
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Fig. 2. Comparison of the parameter ensemble means across study basins for each parameter
estimation method. The mean parameter values were normalized by the respective feasible
parameter range and averaged for each site.
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Fig. 3. Comparison of (a) parameter ensemble range to parameter ensemble size, (b) dis-
charge ensemble range to parameter ensemble range, (c) mean absolute deviation (MAD) of
the parameter ensembles to parameter ensemble range, and (d) interquartile range (IQR) of
the discharge ensembles to IQR of the parameter ensembles for each study site. Parame-
ters were normalized by their feasible range before computing the average parameter ranges,
MADs and IQRs.
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Fig. 4. Box plots of the deterministic measures (a) root mean square error normalized by
the basin mean discharge (nRMSE), (b) percent bias, (c) Nash Sutcliffe efficiency (NSE), and
(d) correlation for the discharge ensemble median for all sites for the verification period.
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Fig. 5. Quantile plots comparing the 0th, 10th, 50th, 90th, and 100th quantiles of the discharge
ensembles from the (a–c) GLUE and (d–f) SCEM methods to the observations for select sites.
The data is displayed on a log scale.
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Fig. 6. Comparison of the containing ratios (CR) to the (a) discharge ensemble ranges and
(b) parameter ensemble ranges; and (c) the average CR from the study sites by flow category.
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Fig. 7. Reliability diagrams for (a, d, g) low, (b, e, h) middle and (c, f, i) high flow simula-
tions from the (a–c) GLUE, (d–f) W-GLUE and (g–i) SCEM methods. Each line represents a
separate study site. Probability frequency diagrams for the simulations are shown in the inset,
where the y axis is the ensemble frequency and the x-axis is the ensemble probability.
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Fig. 8. Discrimination diagrams for simulation ensembles when the observations were in the
(a, d, g) low flow, (b, e, h) middle flow, and (c, f, i) high flow categories from the (a–c) GLUE,
(d–f) weighted GLUE, and (g–i) SCEM methods. The diagram depicts the average of all sites.
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Fig. 9. The (a) probability of detection for floods and (b) probability of non-detection for floods
for the ensemble medians at each site.
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Fig. 10. The (a) Brier score for the categories of flood and no-flood evaluated for the ensembles
for each site, and (b) cumulative frequency of the ensemble probability for flow above flood
stage.
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